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We apply the formal W.K.B. method in the complex plane to the quantum field theory
to obtain the Schwinger formula for spin and spinless particles; i.e., we obtain the
probability that the vacuum state remains unchanged in presence of a constant electric
field. Finally, from Schwinger formula we calculate the probability thgtairs are
produced.
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1. INTRODUCTION

In this work we deduce the well-known Schwinger formula for spin and
spinless particles, using the W.K.B. approximation, i.e., we compute the probability
that the vacuum state remains unchanged in the presence of a constant electric field,
using the semiclassical approach. Once we have deduced the Schwinger formula,
we obtain the probability that pairs are produced. This is the main result of the
paper.

In the first section, we study the Klein—Gordon field coupled with a uniform
electric field. It is a well-known fact that the Klein-Gordon field is equivalent to a
Hamiltonian system composed of an infinite number of harmonic oscillators with
frequencies which depend on time. Then, using the Bogolubov transformation, we
see that the probability that no pairs in tkestate are produced is equal to the
transmission coefficient, and the relative pair production probability is equal to the
corresponding reflection coefficient. We also deduce that the average number of
produced pairs is the penetration factor.

To obtain the Schwinger formula for boson particles, we apply the previous
results to the case of a constant electric field. The Schwinger formula for fermion
particles is obtained using the Exclusion Principle.

Finally, using the previous results, we deduce the general formula that gives
the probability thah pairs are produced in the presence of a constant electric field.
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2. THE KLEIN-GORDON FIELD COUPLED
WITH A VECTOR POTENTIAL

We consider the Klein-Gordon field in a box of volurh€, coupled with
an external uniform vector potentiaﬂ(t). Then the Klein-Gordon equation is
equivalent to a Hamiltonian system (Bjorken and Drell, 1965; Haro, in press),
composed of an infinite number of harmonic oscillators with frequencies which
depend on time. The Hamilton equations are

U +witu=0,  VkeZ? (1)

B =1 [ (

We suppose that lim .., wg(t) = . Then, Eq. (1) has the two following
fundamental systems of solutions (Fedoryuk, 1993):

where
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1. The system “in,” composed of the functiamﬁﬁ(t) that have the asymp-
totic behavior '
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2. The system “out,” composed of the functimj"ﬁtﬁ(t) that have the asymp-
totic behavior '
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'[ +oo [ OUtk(t) - \/TE— exp(:l:lwgt):| = O

Now we write the “in"-states as linear combinations of the “out”-states
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where we have used that
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From this expression, we obtain the “out” operators (Fulling, 1985),

A —_ A + Rk ‘+ Rk +
a’OUt _amk-l— +b|nkT>k' outk amk-l— +b|nkT>k

Let |n;) be the “in"-state that contaimspairs, and letny) be the “out”-state
that contains pairs. Then, it is easy to obtain the following relations (Gailal.,
1994):

o0 0 TR n
[0;) = Z Rk)“|np), |OR) = CRZ <_FRR*> Ing),
n=0 —~ :
with |C~:R|2 = |CR|2 — |TR|2-

From these relations, we deduce that the probability that a pair ik tfhate
is produced (Griblet al.,, 1994; Marinov and Popov, 1977; Parker, 1969) is

(NI 12 = ITRIPIR ",
and the average number of produced pairs irkéiséate is

IR |2
ITxI?

(O8] rBoukIOR) = (OgIBY, - BouekIOR) =

Now, if we use the penetration factqy; = % from the equations

T2 IR(I* =1 (total probability equal to 1),

n=0
0 -
ITel? > nIR™ = p;  (average number of produced pairs in kastate),
n=0
. o . - _ »
we obtain the transmissions and reflection coefficigRté = 1+p RS = 1+kpp

2.1. Pair Production
Let P, be the probability tham pairs are produced, then
n
> TR TTImr
j1z..>jns=1 jez?

To obtain a simple expression Bf we use the following generating function
ag(x) = n}eﬁ Wlmz (see Nikishov, 1970). It is easy to verify that
]

g0 =1+ x" Y []IRs/

n=1 j1>->jns=1
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consequently, we havB"g(0) = n! Y"1 5, [Te_y IR;s/>. On the other hand
9(1) = [Tiez ﬁ = ¢, therefore, we obtain

1 D"g(0)

n' g(1)

Now using the penetration factor, we obtain the formulae:

1 ( 1)n+1
Po = l_[ T = exp(— Z log(1+ p;)) = exp( Z Z )

)

n=

kez? kez?3 kez?3 n=
P, — Z Pk l—[ . Z Z( 1)n+1p exp( Z Z (- 1)n+1 )
ReZ31+pR 1+p| kez?® n=1 kez? n=1

etc..

Remark 2.1. Itis awell-known fact that the photon emission by a classical electric
body follows a stochastic Poisson process (see ltzykson, 1980), however from the
expression oP; we deduce that pair production is not a stochastic Poisson process.

2.2. The Schwinger Formula for Scalar Particles
We consider the casfe(t) = (0, 0, x (1)), where
—CcET if t< =T
x(t) = cEt if -T<t<T
ckET if t>T,
with T > 1. We suppose for examp#E > 0 (the caseE < 0 is analogous).

The Schwinger formula gives the probability that the vacuum state remains
unchanged. Then, using the notation

N — 2TL3E2a, S rrmZCA',
8r3h hceE

the Schwinger formula for spinless particles is (Schwinger, 1951)

1(0]0)|2 _exp< NZ(

whereo = hc is the fine structure constan®) = [ [z, |0) is the vacuum “in”-
state, and0) = [ [z, |0;) is the vacuum “out™-state.

To deduce this formula, we compute the penetration factor, using the rela-
tivistic tunneling effect, i.e., using the “formal” W.K.B. method in the complex

)n+1

exp(=n S)) ,
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plane. The result, explained in detail in Haro (in press), is

=

exp(——lmf \/ c2p? + m2ct 4 c2 (&K + eE) ) > if |ZMe| < eET
0 if |ZMe|> eET,
wherep, = @(kl, ko), andy is a simple curve in the complex plane, containing
the complex turning points&™ +  /p? + m2c?)/eE as interior points. Now,

it easy to verify that

7(c?p? +m?c?) . 2rhks
o — exp(_ihteE ) if |ZMe|<eET
. =

®3)

0 if |ZMk| > eET.

Then, using this penetration factor, the probability that the vacuum state
remains unchanged is

Po= 007 = ] 7 = exp(— 3 log(1+ pﬁ))
kez® Pk kez?
( 1)n+ o )n+l
=expl - Y Z = exp| — Z exp=n9 |,
kezd n= n=1

in agreement with the Schwinger result.

Remark 2.2. The original method to derive the Schwinger’s formulais founded in
the definition of a formal effective vacuum action, namalyGreineret al., 1985;
Grib et al., 1994; Itzykson and, Zuber, 1980; Schwinger, 1951). It is possible to
define this action if we assume that the external potential vanish whent oo,
then the effective vacuum action verifies the equatid@)(& exp(y').

Using the formal solution of the quantum field equation (obtained form the
perturbation theory; Itzykson and Zuber, 1980) it is possible to obtain the following
expression

ih ds 5 /. e \2 a0
W = 7/0 < exp(im?c?)Tr [exp<|s(P — (—:A) > — expis P )} ,
where A is the external potential. Therefore, if we take the poterfiat (0, O,

0, cEf) from this formal expression, it is easy to derive the Schwinger formula.

Remark 2.3. For a Sauter potential, we do not obtain exactly the Schwinger
result. In fact, for the following Sauter-type potentjglt) = cET tanh (%), the



2844 Haro

exact transmission coefficient is (see Geilal., 1994; Nikishov, 1970)
T2 = sinh(2r ) sinh(2r )
KT sintP(r (s 4+ p_)) + coR( )’

where

2rhks

1 2ceER\?
te ET); =3 1—(Ce >

-
i = = [C?pT +mzc4+c2< -

~ 2h

Then, in the cas& > 1, we have
-1
_ m(Ppi+mic!) g2 : 2nhks | o
|TR|2 ~ (1 + EXp( hceE e2E2T2_4'72Lh2k§ )) If | L | eET
|Zzhke | > eET.

Therefore, for this transmission coefficient, a simple calculation gives the
following result:

= 1) 1
1(00)|? = exp( Z ) ’ exp(—nS)/ (1—x3 exp( Sf ) dx) )

=1

In contrast with the result obtained in Gebal. (1994) and Nikishov (1970),

where the authors take (&exp(—%))*l as the transmission coefficient,
and make the replacemefitip; — eET, in order to obtain Schwinger’s result.
From (3), it is easy to verify that in this case the generating fung{@hhas

the following form:

g(x) = exp(N > (A (- 1)) exp(—nS)) .
n=1

If we use the formula (2) and the Taylor's formuél) = >"r° , 299 we
can compute the average number of produced pairs (Holstein, 1999 Nikishov,
1970),

o Dg(1
> np = %i)) = N exp(=9).
n=0

Now, we compute the probability that a pair is produced, using the formula
(2), we obtain

Pl_NZ
NZ

(_ )n+l (_ )n+1

exp(-n9 exp( Z exp(- nS)

(_ )n+l

exp(=n9Py.
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Consequently, from these results, we obtain that the average number of pro-
duced pairs per unit volume and per unit time is

E’a ox am?c?
gz3h P " heek )
and the “relative” probability that a pair is created per unit volume and time is
(1)t m?c?
8713hZ n P " heee )

Remark 2.4. It is important to note that some authors (Greiegral., 1985;
Itzykson and Zuber, 1980; Popov, 1972; Schwinger, 1951) interpret the quantity

( 1)n+1 anCA
8713h Z exp " hceE

as the probability that a pair is created per unit volume and per unit time.

3. THE SCHWINGER FORMULA FOR FERMIONS

To deduce the Schwinger formula for spin particles, we will use the results
obtained in the previous section, in particular, we will use the penetration factor
obtained in section 2. Now, l&¥; be the probability that no pairs are produced in
thek-state, and leB;;, be the probability that a pair is produced in thetate. Then,
using the Pauli Exclusion Principle, we obtain the following equations (Haro, in
press; Nikishov, 1970):

AP+ IBP=1, B =pg

Therefore, the probability that the vacuum state remains unchanged is

00 = [[Q-p)?= exp(zz log(1 - pa))

kez3 kez3

= exp( 2% Z pk> = exp( 2N Z — exp(—nS))

kez3 n=

Now we computeP;. In this case we obtain

=2y T]a-pp?

keZ3 k Tez3

]

= 2N i% exp(=n9 exp<—2N Zn_lz exp(—nS) .
n=1

n=1
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To obtainP,, we use the generating function,

o0 l n
g(x) = exp| —2N nE=1 ﬁ(l —(xX+ 1" expn9 |,
then, the final result is

Py = - D"9(0)9(-1)
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