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We apply the formal W.K.B. method in the complex plane to the quantum field theory
to obtain the Schwinger formula for spin and spinless particles; i.e., we obtain the
probability that the vacuum state remains unchanged in presence of a constant electric
field. Finally, from Schwinger formula we calculate the probability thatn pairs are
produced.
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1. INTRODUCTION

In this work we deduce the well-known Schwinger formula for spin and
spinless particles, using the W.K.B. approximation, i.e., we compute the probability
that the vacuum state remains unchanged in the presence of a constant electric field,
using the semiclassical approach. Once we have deduced the Schwinger formula,
we obtain the probability thatn pairs are produced. This is the main result of the
paper.

In the first section, we study the Klein–Gordon field coupled with a uniform
electric field. It is a well-known fact that the Klein-Gordon field is equivalent to a
Hamiltonian system composed of an infinite number of harmonic oscillators with
frequencies which depend on time. Then, using the Bogolubov transformation, we
see that the probability that no pairs in theEk-state are produced is equal to the
transmission coefficient, and the relative pair production probability is equal to the
corresponding reflection coefficient. We also deduce that the average number of
produced pairs is the penetration factor.

To obtain the Schwinger formula for boson particles, we apply the previous
results to the case of a constant electric field. The Schwinger formula for fermion
particles is obtained using the Exclusion Principle.

Finally, using the previous results, we deduce the general formula that gives
the probability thatn pairs are produced in the presence of a constant electric field.
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2. THE KLEIN–GORDON FIELD COUPLED
WITH A VECTOR POTENTIAL

We consider the Klein-Gordon field in a box of volumeL3, coupled with
an external uniform vector potentialEf (t). Then the Klein-Gordon equation is
equivalent to a Hamiltonian system (Bjorken and Drell, 1965; Haro, in press),
composed of an infinite number of harmonic oscillators with frequencies which
depend on time. The Hamilton equations are

u′′ + ω2
Ek(t)u = 0, ∀Ek ∈ Z3, (1)

where

ω2
Ek(t) = 1

h2

c2

∣∣∣∣∣2πhEk
L
+ e

c
Ef (t)

∣∣∣∣∣
2

+m2c4

 .
We suppose that limt→±∞ ω Ek(t) = ω±Ek . Then, Eq. (1) has the two following

fundamental systems of solutions (Fedoryuk, 1993):

1. The system “in,” composed of the functionsu±
in,Ek(t) that have the asymp-

totic behavior

lim
t→−∞

[
u±

in,Ek(t)−
√

1

2hω−Ek
exp(±iω−Ek t)

]
= 0.

2. The system “out,” composed of the functionsu±
out,Ek(t) that have the asymp-

totic behavior

lim
t→+∞

[
u±

out,Ek(t)−
√

1

2hω+Ek
exp(±iω+Ek t)

]
= 0.

Now we write the “in”-states as linear combinations of the “out”-states

u−
in,Ek(t) = 1

TEk
u−

out,Ek(t)+ REk
TEk

u+
out,Ek(t); u+

in,Ek(t) = 1

T∗Ek
u+

out,Ek(t)+
R∗Ek
T∗Ek

u−
out,Ek(t),

where we have used that

u+( in
out)
= (u−( in

out)
)∗
.

Therefore, for the field̂ψ Ek ≡ âin,Eku−
in,Ek + b̂+

in,Eku+
in,Ek we have

ψ̂ Ek =
(

âin,Ek
1

TEk
+ b̂+

in,Ek
R∗Ek
T∗Ek

)
u−

out,Ek +
(

âin,Ek
REk
TEk
+ b̂+

in,Ek
1

T∗Ek

)
u+

out,Ek.
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From this expression, we obtain the “out” operators (Fulling, 1985),

âout,Ek = âin,Ek
1

TEk
+ b̂+

in,Ek
R∗Ek
T∗Ek

, b̂+
out,Ek = âin,Ek

REk
TEk
+ b̂+

in,Ek
1

T∗Ek
.

Let |nEk〉 be the “in”-state that containsn pairs, and let|nEk) be the “out”-state
that containsn pairs. Then, it is easy to obtain the following relations (Gribet al.,
1994):

|0Ek〉 = C̃Ek
∞∑

n=0

(R∗Ek )n|nEk), |0Ek) = CEk
∞∑

n=0

(
− TEk

T∗Ek
R∗Ek

)n

|nEk〉,

with |C̃Ek|2 = |CEk|2 = |TEk|2.
From these relations, we deduce that the probability that a pair in theEk-state

is produced (Gribbet al., 1994; Marinov and Popov, 1977; Parker, 1969) is

|(nEk|0Ek〉|2 = |TEk|2|REk|2n,

and the average number of produced pairs in theEk-state is

〈0Ek|â+out,Ekâout,Ek|0Ek〉 = 〈0Ek|b̂+out,Ekb̂out,Ek|0Ek〉 =
|REk|2
|TEk|2

.

Now, if we use the penetration factor,pEk ≡ |REk|
2

|TEk|2 , from the equations

|TEk|2
∞∑

n=0

|REk|2n = 1 (total probability equal to 1),

|TEk|2
∞∑

n=0

n|REk|2n = pEk (average number of produced pairs in theEk-state),

we obtain the transmissions and reflection coefficients|TEk|2 = 1
1+pEk

, |REk|2 = pEk
1+pEk

.

2.1. Pair Production

Let Pn be the probability thatn pairs are produced, then

Pn =
∑

Ej 1≥···≥Ejn

n∏
s=1

|REjs|2
∏
Ej∈Z3

|TEj |2.

To obtain a simple expression ofPn we use the following generating function
g(x) =∏Ej∈Z3

1
1−x|REj |2 (see Nikishov, 1970). It is easy to verify that

g(x) = 1+
∞∑

n=1

xn
∑

Ej 1≥···≥Ejn

n∏
s=1

|REjs|2,
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consequently, we haveDng(0)= n!
∑
Ej 1≥···≥Ejn

∏n
s=1 |REjs|2. On the other hand

g(1)=∏Ej∈Z3
1
|TEj |2 =

1
P0

, therefore, we obtain

Pn = 1

n!

Dng(0)

g(1)
. (2)

Now using the penetration factor, we obtain the formulae:

P0 =
∏
Ek∈Z3

1

1+ pEk
= exp

(
−
∑
Ek∈Z3

log(1+ pEk)

)
= exp

(
−
∑
Ek∈Z3

∞∑
n=1

(−1)n+1

n
pn
Ek

)

P1 =
∑
Ek∈Z3

pEk
1+ pEk

∏
El∈Z3

1

1+ pEl
=
∑
Ek∈Z3

∞∑
n=1

(−1)n+1 pn
Ek exp

(
−
∑
Ek∈Z3

∞∑
n=1

(−1)n+1

n
pn
Ek

)
,

etc. . .

Remark 2.1. It is a well-known fact that the photon emission by a classical electric
body follows a stochastic Poisson process (see Itzykson, 1980), however from the
expression ofP1 we deduce that pair production is not a stochastic Poisson process.

2.2. The Schwinger Formula for Scalar Particles

We consider the caseEf (t) = (0, 0,χ (t)), where

χ (t) =


−cET if t < −T

cEt if −T < t < T

cET if t > T ,

with T À 1. We suppose for exampleeE > 0 (the caseeE < 0 is analogous).
The Schwinger formula gives the probability that the vacuum state remains

unchanged. Then, using the notation

N ≡ 2TL3E2α

8π3h
, S≡ πm2c4

hceE
,

the Schwinger formula for spinless particles is (Schwinger, 1951)

|(0|0〉|2 = exp

(
−N

∞∑
n=1

(−1)n+1

n2
exp(−nS)

)
,

whereα = e2

hc is the fine structure constant,|0〉 ≡∏Ek∈Z3 |0Ek〉 is the vacuum “in”-
state, and|0)≡∏Ek∈Z3 |0Ek) is the vacuum “out”-state.

To deduce this formula, we compute the penetration factor, using the rela-
tivistic tunneling effect, i.e., using the “formal” W.K.B. method in the complex
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plane. The result, explained in detail in Haro (in press), is

pEk=exp

(
− 1

h Im
∫
γ

√(
c2 p2
⊥ +m2c4+ c2

( 2π hk3
L + eEz

)2)
dz

)
if

∣∣ 2π hk3
L

∣∣ < eET

0 if
∣∣ 2π hk3

L

∣∣ > eET,

wherep⊥ = 2πh
L (k1, k2), andγ is a simple curve in the complex plane, containing

the complex turning points (−2πhk3
L ±

√
p2
⊥ +m2c2)/eE as interior points. Now,

it easy to verify that

pEk =
exp

(
−π (c2 p2

⊥+m2c4)
hceE

)
if

∣∣ 2πhk3
L

∣∣ < eET

0 if
∣∣ 2πhk3

L

∣∣ > eET.
(3)

Then, using this penetration factor, the probability that the vacuum state
remains unchanged is

P0 = |(0|0〉|2 =
∏
Ek∈Z3

1

1+ pEk
= exp

(
−
∑
Ek∈Z3

log(1+ pEk)

)

= exp

(
−
∑
Ek∈Z3

∞∑
n=1

(−1)n+1

n
pn
Ek

)
= exp

(
−N

∞∑
n=1

(−1)n+1

n2
exp(−nS)

)
,

in agreement with the Schwinger result.

Remark 2.2. The original method to derive the Schwinger’s formula is founded in
the definition of a formal effective vacuum action, namelyW (Greineret al., 1985;
Grib et al., 1994; Itzykson and, Zuber, 1980; Schwinger, 1951). It is possible to
define this action if we assume that the external potential vanish whent →±∞,
then the effective vacuum action verifies the equation (0|0〉 = exp(iwh ).

Using the formal solution of the quantum field equation (obtained form the
perturbation theory; Itzykson and Zuber, 1980) it is possible to obtain the following
expression

W = i h

2

∫ ∞
0

ds

s
exp(−im2c2)Tr

[
exp

(
is
(

P̂ − e

c
A
)2
)
− exp(is P̂2)

]
,

whereA is the external potential. Therefore, if we take the potentialA = (0, 0,
0, cEt) from this formal expression, it is easy to derive the Schwinger formula.

Remark 2.3. For a Sauter potential, we do not obtain exactly the Schwinger
result. In fact, for the following Sauter-type potentialχ (t) = cET tanh (t

T ), the
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exact transmission coefficient is (see Gribet al., 1994; Nikishov, 1970)

|TEk|2 =
sinh(2πµ+) sinh(2πµ−)

sinh2(π (µ+ + µ−))+ cos2(πλ)
,

where

µ± = T

2h

√
c2 p2
⊥ +m2c4+ c2

(
2πhk3

L
± eET

)2

; λ = 1

2

√
1−

(
2ceET2

h

)2

.

Then, in the caseT À 1, we have

|TEk|2 ∼


(

1+ exp

(
−π (c2 p2

⊥+m2c4)
hceE

e2E2T2

e2E2T2− 4π2 h2k2
3

L2

))−1

if
∣∣ 2πhk3

L

∣∣ < eET

1 if
∣∣ 2πhk3

L

∣∣ > eET.

Therefore, for this transmission coefficient, a simple calculation gives the
following result:

|(0|0〉|2 = exp

(
−N

∞∑
n=1

(−1)n+1

n2
exp(−nS)

∫ 1

0
(1− x2) exp

(
− nSx2

1− x2

)
dx

)
.

In contrast with the result obtained in Gribet al. (1994) and Nikishov (1970),

where the authors take (1+ exp(−π (c2 p2
⊥+m2c4)

hceE ))−1 as the transmission coefficient,
and make the replacement

∫
dp3→ eET, in order to obtain Schwinger’s result.

From (3), it is easy to verify that in this case the generating functiong(x) has
the following form:

g(x) = exp

(
N
∞∑

n=1

1

n2
((−1)n+1+ (x − 1)n) exp(−nS)

)
.

If we use the formula (2) and the Taylor’s formulag(1)=∑∞n=0
Dng(0)

n! , we
can compute the average number of produced pairs (Holstein, 1999; Nikishov,
1970),

∞∑
n=0

nPn = Dg(1)

g(1)
= N exp(−S).

Now, we compute the probability that a pair is produced, using the formula
(2), we obtain

P1 = N
∞∑

n=1

(−1)n+1

n
exp(−nS) exp

(
−N

∞∑
n=1

(−1)n+1

n2
exp(−nS)

)

= N
∞∑

n=1

(−1)n+1

n
exp(−nS)P0.
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Consequently, from these results, we obtain that the average number of pro-
duced pairs per unit volume and per unit time is

E2α

8π3h
exp

(
−πm2c4

hceE

)
,

and the “relative” probability that a pair is created per unit volume and time is

E2α

8π3h

∞∑
n=1

(−1)n+1

n
exp

(
−n

πm2c4

hceE

)
.

Remark 2.4. It is important to note that some authors (Greineret al., 1985;
Itzykson and Zuber, 1980; Popov, 1972; Schwinger, 1951) interpret the quantity

E2α

8π3h

∞∑
n=1

(−1)n+1

n2
exp

(
−n

πm2c4

hceE

)
as the probability that a pair is created per unit volume and per unit time.

3. THE SCHWINGER FORMULA FOR FERMIONS

To deduce the Schwinger formula for spin particles, we will use the results
obtained in the previous section, in particular, we will use the penetration factor
obtained in section 2. Now, letAEk be the probability that no pairs are produced in
theEk-state, and letBEk be the probability that a pair is produced in theEk-state. Then,
using the Pauli Exclusion Principle, we obtain the following equations (Haro, in
press; Nikishov, 1970):

|AEk|2+ |BEk|2 = 1, |BEk|2 = pEk.

Therefore, the probability that the vacuum state remains unchanged is

|(0|0〉|2 =
∏
Ek∈Z3

(1− pEk)2 = exp

(
2
∑
Ek∈Z3

log(1− pEk)

)

= exp

(
−2

∑
Ek∈Z3

∞∑
n=1

1

n
pn
Ek

)
= exp

(
−2N

∞∑
n=1

1

n2
exp(−nS)

)
.

Now we computeP1. In this case we obtain

P1 = 2
∑
Ek∈Z3

pEk
1− pEk

∏
El∈Z3

(1− pEl )
2

= 2N
∞∑

n=1

1

n
exp(−nS) exp

(
−2N

∞∑
n=1

1

n2
exp(−nS)

)
.
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To obtainPn, we use the generating function,

g(x) = exp

(
−2N

∞∑
n=1

1

n2
(1− (x + 1)n) exp(−nS)

)
,

then, the final result is

Pn = 1

n!
Dng(0)g(−1).
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